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The strong-friction regime at low temperatures is analyzed systematically starting from the formally exact
path-integral expression for the reduced dynamics. This quantum Smoluchowski regime allows for a type of
semiclassical treatment in the inverse friction strength so that higher-order quantum corrections to the original
quantum Smoluchowski equation �J. Ankerhold, P. Pechukas, and H. Grabert, Phys. Rev. Lett. 87, 086802
�2001�; J. Ankerhold and H. Grabert, Phys. Rev. Lett. 101, 119903 �2008�� can be derived. Drift and diffusion
coefficients are determined by the equilibrium distribution in position and are directly related to the corre-
sponding action of extremal paths and fluctuations around them. It is shown that the inclusion of higher-order
corrections reproduces the quantum enhancement above crossover for the decay rate out of a metastable well
exactly.
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I. INTRODUCTION

Real systems interact with surrounding reservoirs which
typically contain a macroscopic number of degrees of free-
dom and thus constitute heat baths. As a consequence, phe-
nomena such as energy relaxation, fluctuations, and dephas-
ing influence the system dynamics. In the classical domain,
the corresponding theoretical description is well developed
and based on Langevin equations or, equivalently, Fokker-
Planck equations for phase-space distributions �1�. The issue
of dissipative quantum system has been initiated in the 1960s
in the context of nuclear-magnetic resonance �2,3� and quan-
tum optics �4� and since the 1980s has attracted substantial
research in condensed-matter physics �5,6�. Most recently, it
has regained considerable attention for quantum information
processing, where noise appears as an undesirable, but yet
unavoidable effect �7�. In these systems, the coupling be-
tween the relevant system and environmental degrees of free-
dom is designed to be as weak as possible. In contrast, finite
dissipation can also be constructive and lead to qualitatively
new processes such as stochastic resonance �8�, charge trans-
fer in molecular structures �9,10�, or ratchet induced trans-
port in biomolecules �11�. The regime of strong friction is
classically known as the Smoluchowski limit �12� and corre-
sponds to a separation of time scales between equilibration
of momentum, which is fast, and equilibration of position,
which is slow. The generalization to the low-temperature
quantum domain, only a few years ago given in �13�, shows
that quantum fluctuations may appear at relatively elevated
temperatures and substantially influence the dynamics. Since
then, this issue has triggered various applications for strongly
condensed phase systems �see, e.g., �14–19��.

Theoretically, the description of quantum Brownian mo-
tion possesses an exact solution within the path-integral rep-
resentation for the reduced density matrix �5,6,20�. This ex-
pression reveals that due to the non-Markovian nature of
quantum-mechanical fluctuations, a simple equation of mo-

tion for the reduced density does in general not exist.
Progress can be made in the weak-coupling regime addressed
above, where powerful master equations have been derived
and successfully applied, e.g., in quantum optical systems
�4�. With a typical system frequency denoted by �0, the con-
dition for this reduction reads �����0 ,kBT, where � is a
typical coupling strength between system and bath and T is
the temperature. In the opposite range �����0 ,kBT, friction
dominates such that, roughly speaking, the typical linewidth
induced by the environment exceeds the bare line separation
as well as the thermal energy. In this deep quantum domain,
named quantum Smoluchowski range �QSR�, the reduced
dynamics is nearly classical, but with a substantial impact of
quantum fluctuations. Since friction dominates, any approxi-
mate treatment must start from a formulation where the
system-bath interaction is described nonperturbatively as,
e.g., in the path-integral representation. It turns out that
within this formulation, a semiclassical type of approxima-
tion applies and the reduced dynamics can equivalently be
cast into an equation of motion for the marginal distribution
in position, the so-called quantum Smoluchowski equation
�QSE� �21�. In leading order, the quantum fluctuations in the
QSE have been derived in �13�.

What has not been done yet is a systematic analysis of
higher-order corrections to the original QSE. In principle,
this is a formidable task as it requires a systematic expansion
of the full path-integral expression for the real-time dynam-
ics. However, as already pointed out in �13�, if a time evo-
lution equation for the position distribution P exists at all, it

must have the form of a continuity equation, i.e., Ṗ=LP. For
the distribution in thermal equilibrium P�, one then has
LP�=0 which can also be seen as an equation for L pro-
vided P� is known. Higher-order quantum corrections in L
can thus be determined from a systematic approximation to
the exact path-integral expression in imaginary time of the
reduced equilibrium density matrix. Additional dynamical
corrections in L need then be analyzed in the time window
1 /�� t�� /�0

2 only. The corresponding extended QSE cov-
ers the dynamics of the position distribution for strong fric-
tion from high temperatures ����1 to low temperatures
����1.

*Permanent address: Institute for Theoretical Physics C, RWTH
Aachen University, D-52062 Aachen, Germany.

PHYSICAL REVIEW E 81, 021107 �2010�

1539-3755/2010/81�2�/021107�14� ©2010 The American Physical Society021107-1

http://dx.doi.org/10.1103/PhysRevE.81.021107


An alternative approach, recently proposed for the high-
temperature range ����1 by Coffey and co-workers
�22–24�, follows a similar strategy but is based on the ther-
mal Wigner distribution for the uncoupled system. While this
allows to obtain the universal leading quantum correction,
we show here also that it is not a consistent procedure to treat
higher-order quantum corrections. The latter ones carry in-
formation about the system-bath coupling, which is absent in
the bare thermal distribution.

The paper is organized as follows. In Sec. II, a brief re-
view of the path-integral representation is given and the rel-
evant regimes in parameter space are discussed qualitatively.
Then, in Sec. III, the generic case of systems with harmonic
potential is studied for which the real-time dynamics can be
solved exactly. This allows for a detailed analysis in the
strong-friction range at low temperatures. The extension to
anharmonic systems is presented in Sec. IV, where the per-
turbation theory in the inverse friction strength is applied to
derive higher-order quantum corrections to the Moyal coef-
ficients in the QSE. Interestingly, this type of semiclassical
analysis also provides a formal solution to the problem
which reveals the role of minimal action paths and deviations
around them. As an application, the escape rate out of a
metastable well is calculated and shown to reproduce in
higher-order perturbation theory the exact result for the
quantum enhancement factor above the crossover tempera-
ture. The paper concludes with a discussion of alternative
approaches in Sec. V and a summary of the results in
Sec. VI.

II. PRELIMINARIES

A. Dissipative quantum dynamics

Dissipative quantum systems are described with system
+reservoir models �5,25�, where the position q of a system
with potential V�q� is bilinearly coupled to the positions x	
of environmental oscillators. Therefore, the Hamiltonian
reads

H = HS + HB + HI,

HS =
p2

2m
+ V�q� ,

HB = �
	

p	
2

2m	

+
m	�	

2

2
x	

2 ,

HI = �
	
�− c	qx	 +

c	
2

m	�	
2 q2� , �1�

with the q2-dependent term in HI added in order to avoid
coupling-induced potential renormalizations. The dynamics
of the full system described by a density operator W�t� is
then given by

W�t� = exp�− i
�Ht�W�0�exp�+ i

�Ht� . �2�

The initial state W�0� is obtained from the equilibrium den-
sity operator W� through the application of projection opera-

tors acting on the Hilbert space of the system only. In con-
trast to the Feynman-Vernon theory, it therefore bears initial
correlations between the system and the bath. We are, how-
ever, only interested in the reduced system described by the
density operator 
�t�=trB�W�t�	 and particularly focus on its
position representation 
q�
�q��=
�q ,q��. Further, the analy-
sis will be restricted to a class of initial preparations given by


�qi,qi�,t = 0� = 
��qi,qi����qi,qi�� , �3�

with a two-variable preparation function ��qi ,qi��.
Stemming from projection operators, it describes de-
viations from the reduced thermal equilibrium density

�=trB�exp�−�H�	 / �ZZB� with the bath partition function ZB
and a proper normalization for the system Z. The path-
integral approach allows for an exact elimination of the bath
degrees of freedom in the position representation. In doing
so, one obtains


�qf,qf�,t� =  dqidqi�J�qf,qf�,t,qi,qi����qi,qi�� . �4�

The propagation function J�qf ,qf� , t ,qi ,qi�� contains a three-
fold path integral over the system coordinates: two for the
real-time propagation of the initial density matrix and one
thermal path in imaginary time for the initial state. For fur-
ther details, we refer to the literature �5,20�. In time t, the
real-time paths run from qi and qi� to qf and qf�, respectively.
On the imaginary time axis, the thermal path runs from qi at
time 0 to qi� at time −i��, where �= �kBT�−1. Besides the
bare propagation, the integrand in the propagation function
contains an influence functional that keeps track of the inter-
action with the bath. The latter one is nonlocal in time and
contains the damping kernel

K��� = 
0

 d�

�
I���

cosh�����/2 − i���
sinh����/2�

, �5�

which is proportional to the force-force correlation function
of the bath. It is determined by the spectral density

I��� = ��
	

c	
2

2m	�	
��� − �	� . �6�

For purely real-time arguments, this kernel reduces to

K�t� = 
0

 d�

�
I����coth����/2�cos��t� − i sin��t�� , �7�

and for imaginary times one finds K�−i��=� :���� :−k���
with a time-local contribution �= �2 /���d�I��� /�. The
time nonlocal one has a representation in terms of Matsubara
frequencies �n=2�n /��, i.e.,

k��� =
m

��
�

n=−



�̂���n����n�exp�i�n�� , �8�

where �̂�z� denotes the Laplace transform of the classical
friction kernel ��t�. In the sequel, we consider Ohmic damp-
ing, i.e., a spectral density of the form I���=m�̃�, and em-
ploy a Drude regularization, I���=m�̃��c

2 / ��2+�c
2�, with a

high-frequency cutoff frequency �c whenever needed.
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B. Regimes in parameter space

While the path-integral formulation provides with Eq. �4�
a formally exact expression for the reduced density matrix,
its explicit evaluation is very demanding. Analytical results
have been derived for harmonic systems, but in general, even
numerical approaches are limited to specific models or re-
gimes in parameter space. It has further been shown that an
equivalent “simple,” i.e., tractable, equation of motion for
the reduced density does not exist �see, e.g., �26��. The rea-
son for these complications is the non-Markovian nature of
quantum Brownian motion as determined by the time nonlo-
cal damping kernel �7�. In this situation, progress can be
made at least in a perturbative sense in certain ranges of
parameter space. In this section, we discuss the two comple-
mentary domains of weak and strong friction, respectively.

For this purpose, a typical damping strength in the long-
time limit is introduced as

� � �̂�0� = lim
�→0

I���
m�

, �9�

such that both for Ohmic and for Drude damping we have
�= �̃. A second relevant frequency scale of the bath is tem-
perature, i.e., �1=2� /��, while for the isolated system, we
assume a typical frequency �0. In fact, these three scales
define qualitatively the nature of the reduced dynamics.

In case of weak friction � /�0�1, the typical relaxation
time toward thermal equilibrium is of the order of tr�1 /�
and thus much larger than any time scale of the bare system
dynamics. As far as we are interested in phenomena such as
decoherence and dephasing, the damping kernel �7� becomes
time local on a coarse-grained time scale t��� provided
that ����1. This latter condition is the basic assumption for
all types of master equations which have been used in fields
such as quantum optics, nuclear-magnetic resonance, and
most recently in quantum information processing.

In the opposite domain of strong friction � /�0�1, again
a time scale separation exists, since the relaxation of position
happens to occur for times on the order of tr�� /�0

2, while
the momentum relaxes on the time scale 1 /�. Accordingly, a
coarse graining of time leading to a time-local kernel �7� is
possible if

��,
1

�
,

1

�c
�

�

�0
2 . �10�

On the one hand, this latter relation comprises the classical
regime ����1 corresponding for strong friction to �0��
�1 and on the other hand the deep quantum regime ���
�1.

In the classical domain of strong friction, the Fokker-
Planck equation for the distribution in full phase-space re-
duces to the famous Smoluchowski equation for the marginal
distribution in position P�q , t�= 
q�
�t��q� �1,27�, namely,

Ṗ�q,t� =
1

m�
�q�V��q� +

1

�
�q�P�q,t� . �11�

The quantum regime �QSR� has gained much attention only
recently after a QSE has been derived from the path-integral
expression in �13�. The aim of this paper is to systematically

derive higher-order corrections to the original QSE in order
to better understand its limitations, but also to obtain im-
proved results.

III. HARMONIC OSCILLATOR

As mentioned above, harmonic systems V�q�=m�0
2q2 /2

allow for an exact solution of the path-integral expression
�4�. They may thus serve as models to analyze the QSR and
the existence of a QSE in detail.

A. Time-dependent density matrix and time evolution
equation

According to �20�, the propagating function for the re-
duced dynamics can be calculated explicitly and the reduced
density matrix �4� follows from


�rf,xf,t� =
1

4��A�t���2�
q2�

� dxidri��ri,xi�exp�i��rf,xf,t,ri,xi�/�� ,

�12�

where we introduced sum and difference coordinates
r= �q+q�� /2 and x=q−q�, respectively. Here, the minimal
action �� · � is of Gaussian form in the coordinates. It can be
expressed in terms of the symmetric and antisymmetric parts
of the position autocorrelation function

S�t� = Re�
q�t�q��	, A�t� = Im�
q�t�q��	 , �13�

which are determined by the natural frequencies
� /2���2 /4−�0

2. Further, the mean square of position in
thermal equilibrium is found to read


q2� =
1

m�
�

n=−

+
1

�n
2 + ��n�� + �0

2 . �14�

In general, progress can now only be made upon specify-
ing the preparation function in Eq. �12� explicitly. However,
simplifications arise in the strong-friction domain considered
here. Namely, for large friction � /�0�1 and on the coarse-
grained time scale �cf. Eq. �10��

��,
1

�
,

1

�c
� t , �15�

only the frequency

� =
�

2
−��2

4
− �0

2 �16�

is relevant. In this parameter regime, the position autocorre-
lation functions reduce to

S�t� =
�

4m��/2 − ��
cot����/2�e−�t,
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A�t� = −
�

2m��/2 − ��
e−�t, �17�

so that, e.g., A is of order 1 /� or smaller since � /2−�
�� /2. Further, in leading order, the variance in position re-
duces to its classical value 
q2��1 /m��0

2. Then, a straight-
forward analysis reveals that the Gaussian factor in � re-
stricts xi to be at most of order A /�
q2��1 /��2
q2�.
Accordingly, the xi dependence of the preparation function is
only probed on this short length scale and we may set
��xi ,ri����0,ri� in Eq. �12� provided the initial preparation
is sufficiently smooth in xi. Equivalently, the initial prepara-
tion must be restricted to momenta of order ��
q2� or
smaller. This, however, is in complete accordance with the
Smoluchowski limit which requires equilibration of momen-
tum on sufficiently short time, respectively, length scales.

After performing now the xi integration and keeping the
dominant terms only, one arrives at


�rf,xf,t� =
exp�− xf

2
p2�/2�2�
�2��

� dri��ri,0�P��ri�exp�−
1

2�
�rf − ri

S�t�

q2��2� ,

�18�

where

� = 
q2��1 −
S2�t�

q2�2� �19�

and P��ri�=
��ri ,xi=0� denotes the diagonal part of the re-
duced thermal distribution. The equilibrium variance in mo-
mentum is given by


p2� =
m

�
�

n=−

+
���n� + �0

2

�n
2 + ��n�� + �0

2 . �20�

This sum must be regularized by introducing a cutoff
frequency �c as discussed above. In the interesting range
����1, we then easily find 
p2���m�� /��log��c /��,
while in the complementary high-temperature re-
gime ����1, one regains the classical results

p2���m /���1+ ���� /��ln����c /2���. The leading correc-
tions to the result �18� consist of a phase factor
exp��i /��xf�p�rf ,ri�� with

�p�rf,ri� =
Ȧ�t�
A�t�

m
q2�
�

�rf − ri
S�t�

q2�� . �21�

For strong friction, one has ���0
2 /� so that Ȧ /A��0

2 /�.
The order of magnitude of the factor in square brackets is
given by the width of the Gaussian in Eq. �18� as �� and that
of xf by the Gaussian prefactor as 1 /�
p2�. Hence, the above
phase factor produces corrections in the exponential on the
order of 1 /��2
p2� or smaller. These corrections depend on
the cutoff parameter �c and can be made arbitrarily small.
Other corrections to Eq. �18� are at most of order exp�−�t�
and are negligible on the coarse-grained time scale.

Now, a Wigner transform of Eq. �18� immediately
gives rise to a momentum distribution proportional to
exp�−p2 /2
p2�� as expected. For the relevant diagonal part
P�q , t��
�rf ,xf =0, t�, the dynamics can then be cast into an
equation of motion for its time evolution �28�

Ṗ�q,t� =
�

m�0
2�q�D1�q� + �qD2�P�q,t� , �22�

with a drift coefficient D1�q�=m�0
2q and a position-

independent diffusion term D2=m�0
2
q2�. To leading order,

one regains from the above expression in the QSR the
classical Smoluchowski Eq. �11� with D2,cl=1 /� and
� /m�0

2�1 /m�. A systematic expansion around this result
will be given in Sec. III D. Moreover, for systems driven
externally by time-dependent forces f�q , t�, the analysis goes
through accordingly by replacing m�0

2q→m�0
2q+ f�q , t� pro-

vided the typical time scale for the driving sufficiently ex-
ceeds the scales 1 /� ,��. This result has also been derived
from a quantum Langevin equation in �29�.

B. Initial correlations

The pioneering work on quantum Brownian motion by
Feynman and Vernon uses a factorized initial state, where
the initial density of the whole system takes the form
W�0�=
S�0�exp�−�HB� /ZB. Initial correlations between sys-
tem and reservoir are thus absent. Asymptotically, for very
long times, the reduced density matrix approaches the true
reduced thermal equilibrium distribution as well, but for in-
termediate times factorizing and nonfactorizing initial condi-
tions lead in general to different stochastic processes. It is
known that for high temperatures and weak friction, both
processes coincide after a transient period of time which is
short compared to the relevant dynamics �5,6�. Question here
is if this holds true also for low temperatures and strong
friction so that the QSE �22� can also be derived within the
somewhat simpler factorizing formulation.

Following the lines described in the previous section,
one gains for factorized initial states a result which
looks similar to Eq. �18� with the replacements
��0,ri�P��ri�→
S�ri , t=0�, S�t� / 
q2�→−2mA�t� /�, and

�→ �̃=4A2
p2� /�2+�. In contrast to Eq. �18�, however, an

additional phase factor exp��i /��xfrfmȦ /A� appears, which
cannot be neglected. Namely, while the order of magnitude
of the corresponding phase factor �21� for nonfactorized ini-
tial states is completely determined by the widths of the
Gaussians in xf and rf −riS / 
q2�, respectively, this is not the
case here. The order of magnitude of this term depends via rf
also on the distribution of initial values for ri. Hence, the
density matrix does not reduce to a simple product of ther-
mal momentum distribution and time-dependent position dis-
tribution.

If one ignores this complication and focuses on the diag-
onal part of the density 
�q ,xf =0� only, a time evolution
equation of the form �22� is found, however, with a diffusion
coefficient which directly depends on the momentum vari-
ance via 
p2�A�t�2 / 
q2�. While this term is negligible in the
classical domain �it is then of order 1 /�2� and for times
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t�� /�0
2, it provides an essential contribution for ����1 on

the coarse-grained time scale �15�. The result is a Smolu-
chowski type of equation which contains via a time-
dependent drift coefficient the momentum variance. This
analysis reveals that the formulation based on factorized ini-
tial states does not lead to an acceptable Smoluchowski de-
scription in the deep quantum domain. The reason for this
behavior is that for strong friction the time scale on which
initial correlations are established is identical to the relax-
ation time of the full system, i.e., equilibration of position.

C. Equilibrium distribution and current operator

Since the treatment of the dynamics laid out in Sec. III A
requires ergodicity, a time evolution equation for the reduced
density must describe the relaxation of the system to thermal
equilibrium. As we will see here, this allows for an alterna-
tive derivation of quantum corrections to the Smoluchowski
equation starting from the equilibrium density matrix of the
open system.

The time evolution Eq. �22� has the structure of a conti-
nuity equation for the marginal probability distribution in
position. Accordingly, the thermal distribution P� of the har-
monic system is determined by a vanishing current
J=LP��q�=0 with a current operator being defined as

L = D1�q� + �qD2, �23�

with Moyal coefficients D1 and D2. Note that only for sys-
tems with at most quadratic potentials D2 is a constant.

The idea is now to consider �23� as an ansatz with yet
unknown Moyal coefficients. The thermal distribution has
thus to be of the form

P̂��q� =
1

Z0

e−��q�

D2
, ��q� = 

0

q

dy
D1�y�

D2
, �24�

with Z0 being the partition function of the oscillator.
On the other hand, the reduced thermal density matrix for

a general system can be represented as a path integral in
imaginary time, namely,


��q,q�� =
1

Z
 D�q̄�e−SE,ef f�q̄�/�, �25�

where q̄��� connects in the time interval �� endpoints
q̄�0�=q�, with q̄����=q. The effective action contains the
bare Euclidian action of the system and the influence func-
tional in imaginary time determined by the kernel �8�. Z de-
notes a proper normalization, which in case of a harmonic
system coincides with the partition function. For quadratic
potentials, this expression can be evaluated exactly to read


��r,x� =
1

�2�
q2�
exp�− � r2

2
q2�
+

x2
p2�
2�2 �� , �26�

with the variances in position and momentum, respectively,
given in Eqs. �14� and �20�, respectively. Upon comparing

P̂� to the explicit result for P��q�=
��q ,0�, one can deter-
mine D1 and D2. As expected, for the harmonic oscillator,
one regains the results specified already in Eq. �22�.

This alternative procedure reveals an important feature.
We can distinguish two types of corrections to the classical
Smoluchowski equation: those in the current operator are
completely determined by the equilibrium properties of the
system and are influenced by quantum fluctuations, the other
ones are dynamical in origin and appear merely as an overall
factor in front of �qL �cf. Eq. �22�� completely determined by
classical dynamics. Hence, as long as we are interested in the
role of quantum fluctuations in the QSE for anharmonic sys-
tems, it may be justified to perturbatively calculate the
Moyal coefficients from the corresponding thermal distribu-
tion and assume that quantum corrections in the dynamics
are relevant only in higher orders of perturbation theory. In
fact, the analysis presented first in �13� proves this scheme to
be correct at least for the dominating quantum fluctuations.
To prove that it applies also to higher-order contributions
requires to consider the reduced dynamics only within the
time window 1 /� ,��� t�� /�0

2.

D. Perturbation theory for strong friction

So far, the QSE obtained in Eq. �22� is exact on the
coarse-grained time scale. To lay the basis for a perturbative
treatment in case of anharmonic potentials, we study in the
sequel a systematic expansion around this exact expression
in terms of the small parameter �0 /�. The corresponding
results are thus valid for all temperatures provided damping
is strong. For this purpose, one writes


q2� = 
q2�cl + � ,

� =
2

m�
�
n=1


1

�n
2 + �n� + �0

2 , �27�

where 
q2�cl=1 / ��m�0
2� is the classical variance in position.

For strong friction � /�0�1, one then has

� = �
�=0


�0

2�

�!
��,

�� =
2

m�
��x
��

n=1



��n
2 + ��n + x�−1�x=0. �28�

The coefficients �� are independent of system properties and
can be expressed with the help of the polygamma functions.
In lowest orders, they read

�0 =
�

�m�
���1 +

�

�
� + CE� ,

�1 =
2

m��2�2�2�

�
���1 +

�

�
� + CE� − ��1��1 +

�

�
� −

�2

6
� ,

�29�

with CE being the Euler-Mascheroni constant and ��k� the
kth derivative of the digamma function �. In particular, one
has in the high-temperature domain ����1 the approxima-
tion �0��2� /12m, while in the quantum regime ����1,
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the expression �0��� /�m��ln���� /2�� reveals that quan-
tum fluctuations are substantial and not algebraically small.
The coefficients �� ,��1 are on order of ln��� /�2�+1 and
thus serve as semiclassical expansion parameters. We note
that their dependence on Planck’s constant is highly nonal-
gebraic. This way, one obtains the leading quantum correc-
tions in Eq. �22� as

Ṗ�q,t� =
1

m�
�q�m�0

2q +
1

�
�1 + m�0

2��0��q�P�q,t� ,

�30�

where the factor in the diffusion coefficient may in this ap-
proximation also be written in the form 1 / �1−m�0

2��0�.

IV. ANHARMONIC SYSTEMS

Departing from the harmonic-oscillator potential, we have
to resort to approximation schemes in order to solve the
path-integral expressions. In the strong-friction limit, a type
of semiclassical or saddle-point treatment applies where
the coefficients �� serve as expansion parameters. We em-
phasize that this approach covers the high-temperature re-
gime ����1 as well as the challenging deep quantum do-
main ����1. In contrast, an alternative formulation
developed recently �22� is restricted to the former range. For
further discussions, we refer to Sec. V.

A. Perturbation theory

In the spirit of the previous section, we consider the equi-
librium density �25� and obtain for its dominating contribu-
tions a result of the form


��r,x� =
1

Z
exp�−

1

�
SE,ma�r,x��Fma�r,x� , �31�

with the minimal action SE,ma calculated from the minimal
action path q̄ma���. It is given by

mq̈̄ma − V��q̄ma� − 
0

��

d��k�� − ���q̄ma���� = 0, �32�

subject to the boundary conditions q̄�0�=r+x /2 and q̄����
=r−x /2. Fluctuations around the minimal action path are
accounted for by

Fma�r,x� = 
y�0�=0

y����=0

D�y�exp�−
1

2�


0

��

d�y����L̂y�����
�33�

containing the second variational order operator

L̂y��� = �− m��
2 + V��q̄ma��y��� + 

0

��

d��k�� − ���y���� .

�34�

In case that there are several minimal action orbits, one has
to sum over them in Eq. �31�. This general expression must
now be specified to the situation in the QSR. The underlying

picture there is this: the strong friction suppresses off-
diagonal elements of the density matrix meaning that the
minimal action path does not deviate much from the mean r
of its initial and final positions. Thus, it suffices to restrict the
analysis to the diagonal part P��q�=
��q ,0�, i.e.,

P��q� =
1

Z
Fma�q,0�e−S�q�/� �35�

with S�q�=Sma�q ,0�. The minimal action path and deviations
from it are then treated perturbatively in the spirit of a self-
consistent approximation. For this purpose, it is convenient
to switch to Fourier space

q̄ma��� =
1

��
�

n=−



qnexp�i�n�� , �36�

leading us from Eq. �32� to

�n
2qn + ���n�qn + vn/m = b . �37�

Here,

vn = 
0

��

d�V��q̄ma����exp�− i�n�� �38�

and the term on the right-hand side accounts for the fact that
the Fourier series periodically continues the path beyond
the interval �0,��� producing singularities at times �

=n�� , n=0,�1,�2, . . . with b= q̇̄ma����− q̇̄ma�0�.
The strong-friction approximation requires systems with

sufficiently smooth potentials so that locally the expansion
holds

V��q̄ma���� = V��q� + V��q��q̄ma��� − q� +
V��q�

2
�q̄ma��� − q�2

+ ¯ . �39�

From Eqs. �36� and �37�, one observes that the qn ,n�0 are
suppressed at least by factors of order 1 /�, while q0 must be
of order 1 due to q̄ma�0�= q̄ma����=q. Consequently, devia-
tions �q= q̄ma���−q are suppressed by friction as well. Intro-
ducing an anharmonicity length scale l, the above expansion
thus serves as a starting point for a systematic perturbation
theory provided that ��q�� l.

With the above strategy, we obtain an explicit expression
for the thermal distribution in the overdamped limit. To de-
termine with this result quantum contributions in the QSE,
we follow Sec. III C and look for a QSE in the form

Ṗ=�q�LP with a dynamical factor � and a current operator
L�D1�q�+�qD2�q�. Now, if one writes P� in the form

P��q� =
1

Z

e−��q�

D2�q�
, ��q� = q

dy
D1�y�
D2�y�

, �40�

a vanishing equilibrium current �D1�q�+�D2�q��P�=0 is
guaranteed in all orders of perturbation theory. Upon com-
paring the semiclassical expression �35� to Eq. �40�, the
most obvious choice is to identify ��q�=S�q� /� and
D2�1 /Fma�q ,0� with a proportionality constant fixed by the
high-temperature limit. In this range S�q�→��V�q�, while
the fluctuation factor tends toward the free-particle result
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Fma�q ,0�→�m /2��2�. Hence, with the scaled fluctuation
factor

F�q� = Fma�q,0��2��2�

m
, �41�

we have the formal expressions for the Moyal coefficients

D2�q� =
1

�F�q�
, D1�q� =

1

�F�q�
1

�

dS�q�
dq

, �42�

which classically reproduce D1�q�→V��q� and D2→1 /�.
The quantum-mechanical current operator is not uniquely

fixed by the above choice for the Moyal coefficients though.
In fact, any operator of the form

L = d�q��D1�q� + �qD2�q�� �43�

obeys LP�=0 and written as L= D̃1+�qD̃2, one can define
new Moyal coefficients

D̃1�q� = d�q�D1�q� − d��q�D2�q�, D̃2�q� = d�q�D2�q� .

�44�

Thus, it seems that there is a whole class of Moyal coeffi-
cients, where each pair follows from the representative one
�42� by a proper function d�q� obeying d→1 in the classical
limit. By construction, all these current operators produce a
vanishing current for the thermal equilibrium �35�. However,
based on the previous section, the current operator for a har-
monic system is known exactly. This information can be
used as an additional constraint to fix the correct d�q� as we
will show in the sequel. Eventually, dynamical corrections �
are obtained via an evaluation of the reduced dynamics �4�
within the time window 1 /� ,��� t�� /�0

2.
One remark is in order here. While the representation of

the current operator as D̃1+�qD̃2 with the coefficients �44�
may be advantageous for physical interpretations, it has one
major drawback compared to Eq. �43� though. Namely, since

�̃=�dyD̃1 / D̃2=S /�−ln�d�, a numerical calculation of �̃

based solely on the knowledge of the coefficients D̃1/2 gives
an exponent for the equilibrium distribution which carries in
addition to the correct action term lower order terms con-
tained in d. As d is not known explicitly in this representa-

tion, the numerically obtained �̃ may give rise to spurious
equilibrium currents �see, e.g., �14��. Hence, particularly in
numerical applications, the representation �43� is superior.
We will illustrate this by discussing explicit expressions in
Sec. IV C.

B. Leading order

In leading order, we put in Eq. �39� V��q̄ma�=V��q� so that
with vn�V��q����n,0, we find b�0�=��V��q� /m. For n�0,
one has

qn
�0� =

b�0�

�n
2 + ���n�

�45�

and q0 is determined via Eq. �36� from q̄ma�0�=q. This leads
to q0

�0� /��=q−b�0�m�0�. The deviation �q can therefore be

estimated to be on the order of ��� /��ln����� for ����1
and on the order of ����2 for ����1, thus justifying the
perturbative treatment.

The corresponding minimal action reads

S�0��q� = ��V�q� −
��2�0

2
V��q�2. �46�

The fluctuation integral �33� is calculated by replacing
V��q̄ma�=V��q�. The boundary conditions are most conve-
niently taken into account by introducing ��y�0��=���nyn�
in the path integral and representing the � function as an
integral over an auxiliary variable. This way, one gets
F�0��q�= �1−�V��q��0� /� and the thermal distribution in
the form P�

�0�=Y�0�P�
�cl� /Z with the quantum correction

Y�0� = �1 − �V��q��0�exp���2/2�V��q�2�0� �47�

and the unnormalized classical distribution P�
�cl�=exp�−�V�

�see also Fig. 3�. Now, from Eq. �42�, we immediately derive

D1
�0��q� = V��q�, D2

�0��q� =
1

�

1

1 − �V��q��0
. �48�

The dynamical factor follows from the path-integral
calculation as in �13� and reads as in the classical case
�=1 /m�. Note that in this order of perturbation theory,
D2

�0��q���1+�V��q��0� /� so that we regain the QSE al-
ready obtained in �13,30�. For a purely harmonic system, the
result reduces to Eq. �30�.

C. Local harmonic approximation

In next order, the full potential is approximated around the
end points q as a harmonic oscillator meaning that in Eq.
�39� all terms beyond the V��q� contribution are neglected.
From Eq. �37�, we obtain for n�0,

qn
�1� =

b�1�

�n
2 + ���n� +

V��q�
m

. �49�

In analogy to the preceding section, we define a position-
dependent function

��q� =
2

�m
�
n=1


1

�n
2 + ��n + V��q�/m

, �50�

which can be expanded according to Eq. �28� with �0
2 re-

placed by V��q� /m. Summation over all Fourier components
of the minimal action path leads together with the boundary
condition to q0

�1�=��q−�b�1�m��q�. The velocity jump at
the endpoint follows as

b�1� =

��
V��q�

m

1 + �V��q���q�
. �51�

Expanding the minimal effective action up to first order in
�q= q̄ma���−q yields
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S�1��q� =
m

2
qb�1� + ���V�q� −

q

2
V��q��

+ �V��q�
2

−
qV��q�

2
�

0

��

d��q̄ma��� − q�

= ��V�q� − ��2V�2�q�
2

��q�
1 + �V��q���q�

. �52�

The fluctuation path integral F�q� is treated accordingly with
the second derivative of the potential expanded in the same
way as discussed above. In the local oscillator approxima-
tion, first and higher-order terms in q̄ma���−q are truncated
consistently. Defining un= ��n

2+���n�+V��q� /m�−1, one has
for the scaled factor

F�1��q� = ��
n=1

+

��n
2 + �n��un��1 + 2�

n=1

+
un

u0
�−1/2

=

exp�− �m�/2� �
��1

��−1�V��q�/m��/�!	
�1 + �V��q���q�

. �53�

Now, the expressions �52� and �53� combine to provide the
position distribution in thermal equilibrium for a strongly
overdamped system �35�. Since this result is interesting in its
own as it applies to all systems with sufficiently smooth
anharmonic potentials, it is worth to look for quantum cor-
rections in more details. Upon expanding the function ��q�
similarly as in Eq. �28�, quantum-mechanical contributions
to the classical distribution can be systematically derived.
Taking into account terms up to order in �0

2, we have for the
quantum correction Y�1�=ZP�

�1� / P�
�cl�,

Y�1� � �1 − �V��q���0 +
3V��q�

4m
�1 −

3�V��q�
4

�0
2��

�exp��2V��q�2

2
��0 +

V��q�
m

�1 − �V��q��0
2�� .

�54�

In this expression, �1- and �0
2-dependent terms have been

kept so that it applies to the entire strong-friction range with
� /�0

2���. In the high-temperature regime ����1, one has
�1�m��0

2, while for low temperatures ����1, the inverse
relation holds and Y�1� becomes a pure perturbation series in
powers of �0. In Fig. 3, the impact of these quantum fluctua-
tions is exemplified.

Before we proceed, we mention that the approach dis-
cussed so far can also be extended to include off-diagonal
elements of the density matrix. The straightforward calcula-
tion leads to


�
�1��r,x� = P�

�1��r�exp�− ��r�x2/�� , �55�

where

��q� =
2m

�
�
n=1

 ���n +
V��q�

m
�un �56�

corresponds to the local momentum variance. This function
can be expanded according to

��q� = �
�=1


��
�!

�V��q�
m

��. �57�

For purely Ohmic damping, �0 diverges and must be regu-
larized by, e.g., a Drude cut-off �c�� yielding

�0 �
m��

�
����c

�
� − ���

�
+
�2

��c
� −

�

2�
+

2�

�c
� . �58�

In the Ohmic case, the first coefficient stays finite and reads

�1 =
�V��r�
��

��1��1 +
�

�
� . �59�

Now that the thermal distribution is at hand, the Moyal
coefficients follow according to Eq. �42� with F�1� specified
in Eq. �53� and with the action as in Eq. �52�. To obtain the
function d�q� in the ansatz �43�, one observes that for a har-
monic system, the exponential in F�1� is up to a temperature-
dependent factor identical with its partition function Z0,
while the nominator is �
q2� / 
q2�cl. Thus, the known result
�23� is regained if d�1�=F�1��1+�m�0

2��. The generalization
to anharmonic potentials leads then to

d�1��q� = F�1��q��1 + �V��q���q�� . �60�

Of course, in the classical high-temperature domain, one has
d�1�=1. As discussed around Eq. �44�, the current operator
L=d�D1+�qD2� with the known d can also be cast into the

standard form D̃1+�qD̃2. The result is

D̃1
�1� = �1 + �V���q��

d�S�1� − � ln F�1��
��dq

−
d�V���q��

dq
,

D̃2
�1� =

1

�
�1 + �V���q�� . �61�

With these expressions, the current operator in the QSE is
completely determined. For practical applications, it is more
convenient though to systematically expand the above results
to the desired order in the inverse friction strength. For this
purpose, we recall that formally the �� ,��1 are of order
ln��� /�2�+1, while �0 is of order ln��� /�. In particular, in the
QSR range ����1, one obtains

D1
�1��q� � V��q��1 +

�2

4
�0

2�V��q�2 + 2V��q�V��q��� ,

D2
�1��q� �

1

�

1

1 − �V��q��0 +
3

4
�2V��q�2�0

2

,

d�1��q� � 1 −
�2

4
V��q�2�0

2. �62�

Quantum fluctuations appear in the effective drift coefficient
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D̃1
�1��q� � V��q� +

�

2
�0

2V��q��V��q� + �V��q�2� �63�

via the anharmonicity of the potential, while in

D̃2
�1���1+�V��0� /�, only harmonic properties are con-

tained. Corrections here are of order �1��0
2.

At this point, we come back to our discussion at the end
of Sec. IV A. We consider, e.g., a periodic potential for
which one immediately sees that ��S /� is periodic as well
in each order of perturbation theory for the thermal distribu-

tion. For �̃=�D̃1 / D̃2 which must be integrated numerically,
this is by no means obvious. To consistently neglect in the

numerical �̃ contributions higher than of order �0
2 is impos-

sible which may thus lead to finite currents in thermal equi-
librium. This illustrates why it is advantageous particularly
in numerical calculations to work with the coefficients �62�
in the current operator.

In principle, the thermodynamic analysis presented above
must now be supported by a dynamical calculation of the
reduced density �4� to reveal whether quantum corrections in
the dynamical factor � are relevant. This can indeed be done
within the time window �� ,1 /�� t�� /�0

2. Effectively, the
calculation goes through along the lines described for har-
monic systems with �0

2→V��q� /m. As a result, dynamical
deviations appear in a form similar as in Eq. �22� and are
thus completely classical; one has �=1 / �m��+O�V� /�3�.
The QSE in this order of perturbation theory is thus obtained
as

Ṗ�q,t� =
1

m�
�qL�1�P�q,t� , �64�

with the current operator defined either in the form �43� with
the coefficients �42� and �60� or in the standard form with
Eq. �61�.

D. Application: Quantum escape rate

A nontrivial case to prove the consistency of the above
QSE is also to calculate the escape rate out of a metastable
well and to compare to the semiclassically exact result
�5,31�. The latter one can be derived, e.g., within the Im F
approach. Above the crossover temperature, one finds �5,30�

� =
�0

2�

�R

�b
fqexp�− �V�qb�� , �65�

where �0
2=V��0� /m and �b

2= �V��qb� /m� denote frequencies
for small oscillations around the minimum of the well at q
=0 and around the barrier top at q=qb, respectively. For the
quantum enhancement factor, one has

fq = �
n=1

+
�n

2 + �0
2 + �n�

�n
2 − �b

2 + �n�
, �66�

and �R=−� /2+��b
2+�2 /4 is the classical Grote-Hynes fre-

quency. An alternative representation for fq which is more
convenient to compare to strong-friction results is given by

fq = exp�m�

2 �
�=1


��−1

�!
��0

2� + �− 1��+1�b
2��� . �67�

The above expression relies on a local harmonic approxi-
mation and the anharmonicity of the potential matters only in
so far as it leads to a variable curvature when one moves
from the barrier top toward the well minimum. This situation
thus perfectly fits to the type of perturbative treatment out-
lined in the previous section with a position-dependent dif-
fusion term. Stationary nonequilibrium solutions of the QSE
�64� follow from L�1�Pst=−J with a constant flux J. Variation
of parameters leads to

Pst�q� =
�mJ

D2�q�
e−��q�

q



dy
e��y�

d�y�
. �68�

Thus, with the normalization Z=Zwell of the harmonic oscil-
lator in the well, we gain the escape rate in the form

�QSE = J/Zwell �69�

=��m
−

qb

dq
e−��q�

D2�q�q



dy
e��y�

d�y��−1

. �70�

Upon evaluating the integrals in saddle-point approximation
which is justified for sufficiently high barriers, one finds

�QSE �
�0�b

2��
e−�V�qb�fq. �71�

This is a remarkable result as it reveals that the QSE repro-
duces the quantum enhancement factor �66� exactly. The
Grote-Hynes frequency corresponds to classical dynamical
corrections and for strong friction reduces to its known
leading-order approximation �R�1 /�. Hence, our thermo-
dynamic procedure to derive quantum corrections in the QSE
has also been proven a posteriori. In the following section,
we will show that we can extend this method even beyond
the local harmonic approximation.

The above findings are illustrated in Figs. 1 and 2, where
the ratio �QSE /� is depicted for different orders of perturba-
tion theory. In the high-temperature range �Fig. 1�, already

0.0

0.01

0.02

ln
(

Q
SE

/
)

-2 -1 0 1 2 3
ln( / 0)

FIG. 1. �Color online� Escape rates according to the QSE com-
pared to the semiclassical exact rate vs friction strength for a meta-
stable potential with �0=�b in the high-temperature range. Solid
line depicts the leading-order result ��0 term in Eq. �67�� for tem-
peratures �0��=0.2,0.4,0.6; differences between the three data
sets are indistinguishable on this scale. Also shown are results ob-
tained according to �23� with a friction-independent quantum en-
hancement factor for �0��=0.2 �dotted�, 0.4 �short-dashed�, and
0.6 �long-dashed�; see text for details.
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the leading-order correction of the QSE gives basically the
exact result for all damping strength. In contrast, in the ap-
proach recently proposed in �23�, the rate carries the en-
hancement factor �66� for �=0. This leads to increasing de-
viations for increasing damping strength and/or decreasing
temperature and thus reveals the relevance of friction even at
elevated temperatures �for further discussions, we refer to
Sec. V�. For low temperatures �see Fig. 2�, the QSE gives the
correct result for the quantum fluctuations already for mod-
erate friction strengths. Deviations remain small meaning
that the perturbative expansion �67� quickly converges. Note
that for potentials with �0=�b, all odd order contributions
cancel.

E. Higher-order corrections

We now take into account terms up to second order in the
expansion �39�, i.e., in the deviations �q= q̄ma���−q in the
equation of motion for the minimal action path �37�. Accord-
ingly, one has for the zeroth Fourier component �38�

v0
�2� = ��V��q� + V��q��q0 − ��q�

+
V��q�

2 ���� q0

��
− q�2

+ 2�
m=1

 �qm�2

��
� , �72�

while for n�0, coupling terms between different modes
arise

vn
�2� = �V��q�qn + V��q�� q0

��
− q�qn�

+ �
m�0, m�n

qmqn−m

��

V��q�
2

. �73�

Since these coupling terms can be estimated to be of order
V�2�q�V��q��1, they are negligible against the other contri-
butions for ����1. Hence, the leading impact of anharmo-
nicities in the potential can still be treated analytically. Note
that the term with �qm�2 in the component v0

�2� is of the same
order as the one with qmqn−m in vn

�2�, but appears in Eq. �37�
without friction and leads thus to a contribution which is
larger roughly by a factor � compared to the former one. In
complete analogy to our treatment of the minimal action path
in the local oscillator approximation, we then find

qn
�2� =

b�2�

�n
2 + ���n� + A�q�/m

, n � 0, �74�

��2��q� =
2

m�
�
n=1


1

�n
2 + ���n� + A�q�/m

. �75�

Here, one observes the same structure as in
the previous section with the substitution V��q�→A�q�
=V��q�−V��q�mb�2���2� /�. Since ��2� is given by Eq. �75�,
only implicitly, we employ a linearization

��2� = ��q� + ��, b�2� = b�1� + �b , �76�

with ��q� as defined in Eq. �50� to obtain in leading order
���−�V��q�V��q��0�1 /m. Terms of order ��q�3��0

3 and

smaller are neglected here, which also implies omission of
contributions of order ��q�����0

2�1��0
3. In this approxi-

mation, the correction of the velocity jump reads

m�b = − �V��q�mb�1��� +
�V��q�

2�
�mb�1���q��2

−
V��q�mb�1�2

2�
�1�1 + �V��q���q�� . �77�

The action S�2�=S�1�+�S beyond the local harmonic approxi-
mation reads

�S�q� =
��3V��q�2V��q�

2m
�3

2
V��q� − qV��q���0�1, �78�

which is of the same order of magnitude as ��. Formally,
this correction is of order ln2��� / ��4l� with typical anharmo-
nicity length l.

We now turn to the contribution of the fluctuations around
the minimal action path Fma and discuss corresponding an-
harmonic corrections. In the path integral �33�, an expansion
of the second variational term up to first order in �q leads to
an integrand of the form exp�−� �1�+� ��, where the local
harmonic part in the exponent  �1� is given by replacing
q̄ma���→q in V��q̄ma� as in the previous section. The next
order term contains the third derivative of the potential
� = �V� /���0

��d�y2����q���−q� and reads

� =
V��q�
�

� q0

��
− q� �

m=−

+ �yn�2

��
+

V��q�
�

�
m, n�0

ymy−m−n

����2 qn.

�79�

Here, again coupling terms between different Fourier modes
appear and lead to a Gaussian path integral which is only
tractable numerically. To make progress, we estimate the
various terms in Eq. �79� systematically. For this purpose, we
recall that as far as orders of magnitudes are concerned, we
have �q0 /��−q���0, qn�1 /�, n�0 and yn�1 /��, n�0,
q0 ,y0�1. The first sum in � produces two types of contri-
butions, namely, �q0 /��−q�y0

2��0 and �q0 /��−q�yn�0
2

��0 /�� ln��� /�2. The second sum gives rise to two types
of terms as well, one with y0�n�0ynq−n and one where the
sum contains only ymy−m−nqn, with m ,n ,m+n�0. This latter

0.985

0.99

0.995

1.0

Q
SE

/

0 1 2 3
ln( / 0)

FIG. 2. �Color online� Same as in Fig. 1 but in the low-
temperature range �0��=5 and only for the QSE. The leading-
order approximation �dashed line� and the next-order approximation
including terms of order �2 �solid� are shown.
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part is estimated to be of order 1 /�2 and thus larger than the
action correction in Eq. �78�. The former one generates a
shift in the Gaussian integral over y0 which after performing
the integration leads to a contribution with ��n�0ynq−n�2

�1 /�3. The essence of this analysis is that if only the first
sum in � is kept, the distribution is calculated with correc-
tions at most of order ln��� /�2. This in turn means that the
correction �S in the action must be neglected. This way, one
again ends up with independent Gaussian integrals over the
fluctuations modes yn, the local frequency A�q� of which
reads in this order of perturbation theory

A � V� − �V�V���0 − �V��0
2� . �80�

The result for the scaled fluctuation factor �41� F�2� follows
thus from F�1� in Eq. �53� with the replacement V��q�
→A�q�. Contributions to the full path integral beyond the
Gaussian approximation for the yn are also negligible.
Hence, the quantum contribution to the thermal distribution
Y�2�=ZP�

�2� / P�
�cl� in the range ����1 reads

Y�2� � �1 − �V��0 + �2�3

4
V�2 + V�V���0

2�
�exp�− �S�1� − ��V�/�� , �81�

where the action contribution S�1�−��V is the exponent in
Eq. �54�. This result is exact up to order log���2 / ��2l�.
Higher-order correction terms couple the Fourier modes in
the minimal action path as well as in the fluctuation path
integral and are analytically no longer accessible.

The above distribution determines the Moyal coefficients
of the QSE to be of the form

D1
�2� � V��q��1 +

�2

4
�V��q�2 − 2V��q�V��q���0

2� ,

D2
�2� �

1

�

1

1 − �V��q��0 + �2�3

4
V��q�2 + V��q�V��q���0

2

.

�82�

Now, also the diffusion coefficient carries information about
the anharmonicity �cf. Eq. �62�� Interestingly, the structure of
the drift D1

�2� is similar to that of D1
�1� with 2V�V� replaced by

−2V�V�. This is a direct consequence of the perturbation
theory for the position distribution, which reproduces P�

�k�

only with the given set of D1
�k� , D2

�k�. Apparently, the leading
anharmonic corrections to P� appear in the fluctuation pref-
actor only. Eventually, we replace in d�q� the second deriva-
tive of the potential consistently by A�q� so that

d�2��q� � 1 −
�2

4
V��q�2�0

2 �83�

remains unaltered compared to d�1�. Upon inspection of Eqs.
�81� and �82�, we find the third derivative of the potential to
appear in the second-order term in �0. This reflects the non-
local feature of the deep quantum regime and shows that �0
indeed plays the role of a semiclassical parameter similar to
Planck’s constant for an isolated quantum system. In prin-

ciple, one must now also extract dynamical corrections from
the reduced dynamics. However, we know from the previous
section that in local harmonic approximation, these are at
most of order 1 /�2 compared to the leading term 1 /m�. The
quantum corrections accounted for in the above coefficients
are much larger, namely, of order log���2 / ��2l�. As a conse-
quence, additional dynamical corrections due to the anhar-
monicity do not play a role.

To illustrate the perturbative results for the equilibrium
distribution, we consider a double-well potential of the form
V�q�=−m�0

2q2 /2+	q4 /4. In Fig. 3, the thermal density is
shown in the classical regime together with the quantum dis-
tributions in leading order, local harmonic approximation,
and beyond as discussed above.

The leading-order describes the quantum tunneling in the
barrier range, while the higher-order approximations also
capture the tunneling at the rising walls of the potential.
Around the barrier top, all quantum results basically coincide
and start to deviate only toward the well region. Further, the
maximum of the distribution shifts slightly toward the barrier
top thus reflecting the finite transparency of the barrier.

V. COMPARISON TO OTHER APPROACHES

The analysis of the strong-friction limit in quantum me-
chanics based on path integrals as outlined in �13� has trig-
gered other studies proposing alternative approaches to de-
rive quantum Smoluchowski equations. Here, we briefly
discuss them in comparison to this previous work and its
extension presented above. For this purpose, we recall that
one carefully has to distinguish between the strong-friction
range at high temperatures ����1 and that at low tempera-
tures ����1. While in the latter domain, the strong-friction
analysis must be based on a formulation which captures the
system-bath interaction nonperturbatively, in the former re-
gion, one could hope that perturbative formulations such as,
e.g., master equations are sufficient to derive at least leading
quantum corrections. This assumption is based on the fact

0.5

1.0

1.5

P

0 1 2
x

FIG. 3. Equilibrium distribution scaled with P�
�cl��x=0� in a

double-well potential vs the scaled position x=q /�� /m�0 for
various orders of perturbation theory. The classical result �dotted� is
depicted together with the leading-order expression �short-dashed�
according to Eq. �47�, the expression in local harmonic approxima-
tion �dashed� according to Eq. �54�, and the expression beyond
�solid� according to Eq. �81�. Parameters are � /�0=3, �0��=1 for
the bath and 	� /m2�0

3=0.5 for the potential so that the well mini-
mum is located at x=�2.
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that the Wigner representation of, e.g., the Caldeira-Leggett
master equation reduces in the high-temperature limit to the
classical Fokker-Planck equation.

One approach put forward in �32� starts directly from the
classical Smoluchowski equation and quantizes this reduced
equation of motion. Such a procedure is questionable already
at sufficiently elevated temperatures and it is certainly not a
consistent way to take into account the quantum mechanics
of the reservoir and its interaction with the system. In fact,
corresponding results contradict the fluctuation-dissipation
theorem and may thus even lead to unphysical predictions.
This failure has already been discussed in �33�.

The formulation developed in �34� focuses on the case
of a QSE for free Brownian motion and uses an
ad hoc procedure to derive quantum corrections in the
mean-square displacement in position. From the exact
path-integral results �5,20�, one finds that in this case

�q�t�−q�0��2�=2�t+�t� /M��, where �t captures deviations
from the classical behavior. For strong friction and on the
coarse-grained time scale �� ,1 /�� t �see Eq. �15��, �t is at
most of order �� and must thus be discarded in a systematic
treatment. As shown above, the QSE for a free Brownian
particle coincides with the classical Smoluchowski equation.

In the high-temperature domain ����1, Coffey and co-
workers �22,23� recently derived quantum corrections in a
QSE by determining a current operator of the form �23�,
however, using the thermal Wigner function of the bare sys-
tem. The crucial question is whether in this domain quantum
corrections can then be derived systematically. Unfortu-
nately, and in contrast to a naive expectation, this is not the
case. To see this in detail, we look at the exactly solvable
harmonic system treated already in Sec. III. In the strong-
friction limit, the exact diffusion term in the QSE is given by
the variance in position m�0

2
q2� as shown in Eq. �22�, i.e.,

D2
ex =

�0
2

�
�

n=−

+
1

�n
2 + ��n�� + �0

2 . �84�

For ����1, this expression can be expanded in powers of
�. In leading order, only the n=0 contribution must be
taken into account and one regains the classical result. In
next order, only the �n

2 ,n�0 term in the denominator must
be kept due to ����1, which in turn implies �0���1
since � /�0�1. Hence, the leading quantum correction is
��0

2 /���n�0�1 /�n
2�=�0

2�2� /12. This is the well-known uni-
versal quantum correction, also discussed in textbooks �5�,
which reveals that in the high-temperature limit, the leading
quantum correction is independent of friction. Hence, in
principle, it can indeed also be derived from the bare equi-
librium distribution.

Now let us look at higher-order quantum corrections. An
� expansion of the Wigner function of the bare system
as done in �22,23� leads to a powers series exactly with
�� /2���2� /12 as expansion parameter. Accordingly, quan-
tum corrections in a diffusion coefficient gained with this
expansion are independent of � to all orders of �. This can
only be true though if the �n� term in the above sum can be
neglected in all orders in �. This leads to the conditions
�n���n

2 ,�0
2 , n�0. The first relation brings us back to

����1, while the second one gives � /�0��0��. For
strong friction � /�0�1, these two conditions contradict
each other since the first one implies �0���1, while the
second one requires 1��0��. It is thus not consistent to
neglect the � dependence of the diffusion term beyond the
leading quantum correction. The correct expansion in the
strong-friction range which only requires � /�0

2��� to en-
sure the validity of the Markov approximation and applies
from ����1 to ����1 is given in Eq. �28�. In the high-
temperature range �0�������1, this leads to the series

D2
ex =

1

�
�1 +

��0���2

12
−
�

�0

��0���3

4�3 !�3� + ¯� , �85�

in contrast to Coffey’s result

D2
Coff =

1

�
�1 +

��0���2

12
−

��0���4

720
+ ¯� . �86�

The first conclusion is that Coffey’s approach is correct in
the regime ����1 only in leading order in �, where it co-
incides with the leading-order result presented above.
Higher-order corrections in the QSE as specified, e.g., in �23�
are incorrect and, while they may give qualitatively reason-
able results, lead to uncontrolled approximations. The second
and more fundamental conclusion is that for larger friction,
subleading quantum fluctuations are determined by the
system-bath interaction so that any approach which treats
this interaction perturbatively fails even at elevated tempera-
tures.

In the above discussion, we focused on the position vari-
ance for a purely Ohmic spectral density. In a strict sense,
however, the momentum variance diverges in this limit �cf.
discussion below Eq. �20��. This problem is usually cured by
introducing a high-frequency cutoff �c as mentioned at the
end of Sec. II A �5�. The above high-temperature expansion
remains then valid apart from corrections of order
� /�c , �0 /�c if �c���1. In particular, this latter relation
guarantees that equilibrium fluctuations are still determined
by almost Ohmic spectral densities and almost Ohmic fric-
tion functions �̂�z� in accordance with an effectively Mar-
kovian theory.

To illustrate this discussion, we show in Fig. 4 successive
quantum corrections in the exact diffusion coefficient D2

�ex� of
a harmonic system according to Eq. �28� and according to
Coffey’s ”without-� expansion,” respectively. It is conve-
nient to consider the respective nth order approximation D2

�n�

properly weighted by the full result, i.e.,

�D2
�n� =

D2
�n� − D2

�n−1�

D2
ex − D2

�n−1� . �87�

For n=1, we have D2
�0�=D2

�cl� and D2
�1�=D2

�cl�+�0
2�2� /12 so

that both expansions coincide as pointed out above. Substan-
tial differences appear, however, for n=2 in the range, where
the authors of �22� claim their approach to work, namely, for
����1 and � /�0�1. Even in the strongly underdamped
regime for fixed ����1, the without-� expansion is only of
limited use since one then leaves the classical regime and
enters the low-temperature range.
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The escape rate in the high-temperature range obtained
within this type of approximation is shown in Fig. 1. Accord-
ing to the above discussion, the corresponding quantum en-
hancement factor is found to be independent of friction �23�.
Obviously, deviations tend to increase for stronger friction,
i.e., in the regime where the approach is supposed to apply.

VI. DISCUSSION

In this paper, we developed a systematic semiclassical
expansion for the imaginary time path integral of the statis-
tical operator in order to derive drift and diffusion terms in
the QSE. Since in the QSR the thermal time scale �� is still
small compared to the time scale for relaxation of the mar-
ginal distribution in position, non-Markovian features of the
reduced dynamics do not play a role and a QSE exists. Drift
and diffusion are directly related to the action of the extremal
paths and fluctuations around them. The physical picture be-

hind is that for strong friction and on the thermal time scale
�� orbits explore the potential only locally. This allows for a
perturbative treatment which successively takes higher-order
terms in the expansion of the potential around the average
minimal action orbit into account. Hence, in leading order,
the dynamics takes place effectively in a potential of con-
stant force, in next order in a local harmonic potential, and
anharmonicities become relevant only beyond. Dynamical
corrections are classical in nature, at least up to the local
harmonic approximation.

The systematically improved QSE is applied to calculate
the escape rate out of a metastable state for low tempera-
tures, but above crossover. It then reproduces the quantum
enhancement factor exactly, whereas dynamical corrections
only appear in the classical form of the Grote-Hynes fre-
quency. Note that for strong friction, the inverse crossover
temperature �0 is given by ��0�2�� /�b

2. On the other
hand, the QSR condition requires ���� /�b

2. This is why the
deep tunneling regime below the crossover lies outside the
range of validity of the QSE and can thus not be captured by
this type of approximation. Above the crossover, however,
the rate expression is not sensitive to local anharmonicities
of the metastable potential since such contributions only en-
ter in third and higher-order terms of a variational expansion
around the trivial minimal action paths residing at the well
bottom and at the barrier top. The systematic expansion out-
lined here allows to study quantum effects in overdamped
systems in a broad range of parameters comprising the do-
mains of high as well as of low temperatures and due to the
high order of perturbation theory also the range of strong to
only moderate dissipation.
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